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1 Introduction

Machine learning is becoming much more profound in making decisions critical to life, death and personal
wellness. However, machine learning models are black bozes that find patterns in data without being able
to explain their methodology. There is a lack of sufficient techniques to explain and interpret machine
learning decisions. Machine learning utilization can be problematic in areas where decisions of models must
be explainable due to laws or regulations or where accountability is required. The need to trust machine
learning is paramount.

We define interpretability as the ability to explain or to present in understandable terms to a human |7].
Broadly, interpretability focuses on the how. Before proceeding with a formal description, we discuss why

do we need interpretable machine learning:

e Learn about the data. Models are meant to be a formal representation of the observed data. Machine
learning model can be used to provide useful information to human decision makers and help users

develop intuition about the prediction problem.

e Interpreting a machine learning model enable users to test the causality of the features and help users
debug appropriately, for example retrain a model with misclassified samples. Interpretability faciilitates

better model selection and feature engineering.
o Accountability of machine learning decisions is an open legal problem.

e We might feel more comfortable with a well-understood model. Two aspects of trust: (1) trusting a
prediction, i.e. user trusts a decision and act on it, and (2) trust a model, i.e. user trusts a model to

act in a reasonable manner in real scenarios [12].
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Figure 1: Evaluation typically compares predictions and ground truth. Predictions alone and metrics calcu-
lated on these predictions might not be suffice for interpretation. [9)



e Machine learning models might learn the bias in the training data and provides false insights at the
cost of compromising on fairness. Produced interpretations can be used as a way to assess whether

decisions made automatically conform to ethical standards.

2 Interpretable Machine Learning Concepts

2.1 Interpretability Techniques

We identify the different types of interpretability techniques:

e Local interpretability implies knowing for a particular decision. Global interpretability implies knowing
the general patterns. We interpret globally for all data points, such as the importance of each variable

of the model decisions.

e A technique that is model-specific is only suitable for use by a particular class of algorithm. Model-

agnostic techniques work across all types of models.

2.2 Properties of Interpretable Models

Models properties fall into two categories [9]:

e Transparency refers to how does the model work. We observe transparency at the level of the full model
(simulatablity), at the level of components (e.g. each input, parameter and calculation) (decomposibil-

ity), and at the level of the learning algorithm itself (algorithmic transparency).

e The second relates to post-hoc explanations which answers the question what can the model tell us.
Examples of post-hoc explanation consists of model generated text explanations, render visualizations

of learned representations ,and explanations by example.

2.3 Interpretability vs. Completeness

Ideally, we want an explanation to be interpretable (understandable to humans) and complete (describe the
decisions of a system in an accurate way) [8]. Accurate decisions are not easily interpretable; and conversely

the most easily interpretable descriptions may not be the most accurate.

3 Inherently Interpretable Models
The easiest way to achieve interpretability is to use interpretable models, i.e. linear regression and decision

tree.

3.1 Linear Regression

For linear models such as linear and logistic regression, we measure the importance from the weights w; of

each feature x;. For normalized data, w; represents the important model-specific technique that can be used



for both global and local explanations.

Y =wo+ Z W;T; (1)
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Estimated weights come with confidence intervals. Confidence intervals provide information about the
"true" weight parameter. For instance, a 95% confidence interval tells us that the confidence interval would
contain the true weight in 95 out of 100 sampled cases, given the linear regression model is the correct model
for the data.

Feature importance of linear regression can be obtained by the absolute value of the t-statistic, estimated
weight scaled with its standard error. The importance of a feature increases with increasing weight. The
feature is less important if the variance is high.
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where SE is the standard error.

The weighted sum model of how linear regression makes predictions transparent to users. Linear regres-

sion is accepted for predictive modeling and doing inference. However, linear regression is inadequate in

modeling nonlinearity of input data.

3.2 Logistic Regression

Logistic regression is a generalized linear model (GLM) that has similar benefits as linear regression when

interpreting model weights. The weighted sum is transformed by the logistic sigmoid function to a probability.
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We examine the relationship between predictions and the odds. The odds of an event (i.e. an instance is

classified as y = 1) are written as the probability of event divided by probability of no event.
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Increasing a feature by 1 will result in the following odds ratio:

oddsy; 11 exp(wy +wizy + ... + wi(z; + 1) + ... + wpzp)
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We apply the following rule:
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Increasing a feature z; by 1 will scale the odds by a factor exp(wj).



3.3 Decision Tree

Decision tree is an explanation family similar to decision rules. Decision tree is structured as a graph
where there is a split for each feature (node) according to cutoff values. The classification and regression
trees (CART) algorithm is a popular algorithm which takes a feature and determine which cutoff values
minimizes the variance of y.

We track how decisions are made from the root node to the leaf node. This is model specific techniques

used for local explanations of a decision tree model.
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We explain an individual prediction by adding contributions of each node. We add contributions of p
features to explain how much each feature contributed to a prediction. The root node predicts the mean of
the outcome of the training data g.

Feature importance is used for deep decision tree to interpret the importance of each feature at a global
level. The overall importance of a feature in a decision tree can be computed by going through all the splits
for which the feature is used and measure how much it has reduced the variance.

Decision tree is suitable to capture relationships between data and features. The tree structure has a
natural visualization of nodes and edges. The explanations for each instances is simple since it falls into the
binary decisions of each nodes. However, decision tree is inefficient to deal with linear data. Decision tree
can become uninterpretable if the tree becomes deep. The maximum number of terminals is 2¢ where d is
the depth of tree.

4 LIME (Local Interpretable Model-Agnostic Explanations)

Local Interpretable Model-Agnostic Explanations (LIME) [12]| is a technique to provide explanations for
individual predictions as a solution to "trust the model" problem. The key idea is to locally approximate a
black-box model by an interpretable model (local surrogate model). LIME is a model-agnostic model which
approximates the underlying model f by perturbing the input and observe the prediction changes.

We want to find a locally interpretable model for a black-box model f(x) around the instance of interest
x. f(x) is the probability that = belongs to a certain class, f : R? — R. G is a class of potential interpretable

models such as linear models and decision trees. We minimize a loss function:

§(z) = argmin £(f, g, m) + 9) (8)

Model g € G is {0,1}% which acts over absence /presence of the interpretable components. m,(z) denotes
the proximity measure between an instance z to z, as to define locality around = (how large the neighborhood
around z). We let L(f, g, m,) be a measure of how unfaithful g is in predicting f in the locality defined by
7, (how well the interpretable model approximates the black-box model). We add a regularizer Q(g) be a
penalty for the complexity of model g, i.e. for decision trees Q(g) may be the depth of the tree, for linear

models (g) may be the number of non-zero weights.



I
I
a +
+
4+ ®
+<4 @
—|—,. ° +
| @ e®
I
I
]

Figure 2: The black-box model’s decision function is represented by the blue/pink background. We want to
understand the factors influencing the black-box model around a single instance of interest (bold red cross).
LIME samples instances, get approximation using f and weighs them by the proximity to the instance being
explained. The size of the data points corresponds to the proximity. The dashed line is the interpretable
model which serves as a "local explainer" for the specific instance. [12]

We denote 2 € R? be the original representation of an instance and 2’ € {0, 1}‘1/ to denote a binary vector
for its interpretable representation ("space for the interpretable representation”).

LIME makes the assumption that every complex model is linear on a local scale. We minimize L(f, g, 7 )
while having €2(g) be low enough to be interpretable. Different explanation families G, fidelity functions £
and complexity measures €.

We approximate L(f,g, ;) by drawing non-zero samples around z’ uniformly at random. Given a
perturbed sample 2z’ € {0, 1}d/ (artificial data), we recover the instance in the original representation z € R?
and acquire f(z) which is used as a label for the explanation model. The intuition behind LIME is depicted
in Figure [2} Instances both close to = (high weight from 7, ) and far away from z (low weight from 7,) are

sampled to capture the locality.

4.1 Interpretable data representation

LIME is applicable on tabular data, text and image. Continuous variables in tabular data are discretized
to obtain categorical data. We use bag of words and set a limit K on the number of words, i.e. Q(g) =
ool[||wgllo > K] for text classification. "Super-pixels" (any standard algorithm) is used instead of words for
image classification. This particular choice of 2 makes Eq. intractable. However we approximate by

initially selecting K features with Lasso and then learning the weights via least squares.

4.2 Submodular Pick for Explaining Models

Global understanding of the model is achieved by explaining a set of individual instances. These instances
are to be selected judiciously since we may not have the time to examine a large number of explanations.
Budget B denotes the number of explanations we are willing to look at under to understand the model.
We should pick a representative set of explanations, i.e. non-redundant explanations to represent the global

model behavior.



Original Image Explanation

Figure 3: Explaining an image classification prediction using Google’s Inception neural network. The pre-
dicted class is "Dalmatian" with p(0.99).

Given the explanations for a set of instances X (| X| = n), we construct an n x d’ explanation matriz W.

for

W implies the local importance of the interpretable components for each instance. We set W;; = |wy, .
an instance z; and explanation g; = {(x;). I; (column j) denotes the global importance of that component.
We formalize the non-redundant coverage intuition in Eq. @D Set function ¢, given W and I, calculates

the total importance of the features that appear in at least one instance in a set V.

d/
(V1) =3 Liieviws, >0l (9)
j=1
Eq. is maximizing a weighted coverage function, finding the set V, |V| < B that achieves highest

coverage.

Pick(W,I) = argmax c¢(V, W, ) (10)
V,|VI<B

4.3 Experimental Example

In Figure [3] the super-pixels with positive weight towards the predicted class is highlighted. The neural
network picks up the outline of the predicted class "Dalmatian". This kind of explanation enhances trust
in the model (regardless whether the prediction is correct or wrong) as the classifier shows to be acting in a

reasonable manner.

4.4 Linear LIME and Shapley Values

SHAP (SHapley Additive exPlanation) is a game theoretic approach to explain the decision of a model .
The goal is to explain the prediction for z; as a sum of contributions from individual feature values.

We estimate the SHAP values with weighted linear regression model as the local surrogate model and an
appropriate weighting kernel. The Shapley kernel to obtain SHAP values is given by:

M-1
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where M is the number of features and |2’| is the number of non-zero features in z’.

5 Discussion

Linear models are not necessarily more interpretable [9]. A decision tree with billions of nodes, for instance,
may be challenging to understand.

Explaining interpretations requires prior knowledge and human-based evaluations of explanations could
be misleading because of bias. A reasonable explanation provided for a model decisions does not necessary
be reflective of what the model is doing.

Through model or post-hoc interpretability, we might be able to understand how a model make a predic-
tion. Yet we are unable to understand the model if the data representation of the underlying model is not
explainable.

A limitation of LIME is that an interpretable model is selected to approximate the black box, not the
data. The most useful applications of LIME is to define a low-dimensional interpretable data representation

from high-dimensional data.
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